

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 2 May 2022

Hardware/software partitioning in reconfigurable embedded

systems: a new approach

Mr. N.SRINIVAS RAO
1
,Dr.A.VENKATESWARLU

2
,Ms.Y.ANITHA

3
, J. Rajyalaxmi

4
,Ms.K.Sunitha

5
,

Abstract—

The separation of hardware and software is a vital aspect in developing a flexible embedded system. In order to reach the high

performance of dedicated hardware, computer architectures that can change their hardware to each application are being designed, and

reconfigurable computing is a potential way to resolving the conventional trade-off between flexibility and performance. In this

research, we first review and describe existing hardware and software partitioning techniques before proposing a novel approach for

task division and scheduling that takes use of the dynamic reconfiguration and delay of reconfigurable hardware. The suggested method

divides a massive programme into smaller, more manageable jobs, each of which is related to the others through constraints. And based

on the sequence in which the activities were carried out, a directed acyclic graph (DAG) was created to illustrate the connections

between them. Then, a method called GATS, which combines the Genetic Algorithm and the Tabu Search algorithm, is used to map the

particular application described in the DAG to the hardware and software platform. Priority-based scheduling allows for the quickest

possible assignment and execution sequence of tasks. The testing results demonstrate the method's strong performance and its ability to

transfer the application task to the reconfigurable system.

Key words :

Task scheduling; Hardware/software isolation; Genetic algorithm; Tabu search method; Reconfigurable

embedded system

INTRODUCTION

These days, hardware and software are inseparable

components of every electronic system worth its

salt. Some sort of computer hardware and software

working together to carry out a certain task defines

an embedded system. It's used in a wide variety of

vehicles, networks, smart homes, hospitals, clinics,

and even military applications. In contrast to the

physical components, software is simpler and more

quickly to create and update. As a result, the time

and money required to create software is much

lower. However, the performance gains from

hardware are substantial. A designer of an

embedded system should aim to reduce the total

time, space, and energy needed to run the system.

Embedded systems may be built in one of two

primary ways. Both hardware and software are

considered. The hardware approach relies on the

construction of specialised hardware logic circuits

to complete system functionality, whereas the

software approach uses microprocessor software to

do the same. Assigning system functions to the

desired structure in the software and hardware

domain while still satisfying design restrictions is

the primary objective of hardware/software

partitioning, which is essentially a combination

optimization issue. It consists of three parts:

allocating processing units (choosing the right

software and hardware for the job), assigning tasks

(making sure they get done in the right order and at

the right time), and scheduling them so that they

run as efficiently as possible and within budget.

When considering solution quality and solution

time, the problem is challenging since the solution

space is large and disjoint in many dimensions. The

complexity of the issue may be reduced by

simplifying the model of the goal structure, and this

is done by focusing on the execution time, cost,

power, and other important overhead while

evaluating the hardware and software partition.

Associate Professor
2,
, Assistant Professor,

1,3,4,5,

Mail Id : normula09@gmail.com,Mail Id : wenkateswarlu@gmail.com, Mail id : yerasangianitha478@gmail.com,

Mail Id : rajyalakshmivarshini@gmail.com, Mail Id : sunitha.sunitha250@gmail.com ,

Department of ECE, Swarna Bharati Institute of Science and Technology (SBIT),

Pakabanda Street,Khammam TS, India-507002.

http://www.ijpast.in/
mailto:normula09@gmail.com,Mail
mailto:wenkateswarlu@gmail.com
mailto:yerasangianitha478@gmail.com
mailto:rajyalakshmivarshini@gmail.com,%20Mail
mailto:sunitha.sunitha250@gmail.com

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 2 May 2022

RELATED PAPERS

Smaller, lighter, less power-hungry, more

complicated, and so on are all trends in the

embedded system industry thanks to advancements

in integrated circuit technology. The progress of

embedded system development has been stymied

by the persistence of the traditional design

methodology. There must be tight integration and

coordination between the software and hardware

design phases. As a result, the concept of

"hardware and software co-design" has emerged.

Changes in Hardware and Software Segmentation

.Research into hardware/software co-design started

in the early 1990s, with the concept being publicly

suggested at the inaugural International Workshop

on Hardware/Software Codesign (CODES) in

1992. Then, several prestigious institutions began

doing theory and research on software and

hardware co-design for embedded systems. In

addition, certain EDA suppliers have released

instruments that facilitate the joint development of

hardware and software. Prakash and Parker's SOS

system [1] is the first hardware and software co-

design system. They created it at the University of

Southern California. It's possible to schedule work

over many processors, but the technology is too

sluggish to be used in large-scale applications. The

German Technical University in Braunschweig's

COSYMA (Co-synthesis for Embedded

Architecture) [2] system is limited to using a single

CPU and a single ASIC. Software may make use of

the partitioning approach to optimise calculations

using co-processors. The lack of simultaneous

processing between the CPU and coprocessor is the

biggest problem with COSYMA [3]. Frank Sloke’s

Corsair system [4] is a multi-processor and multi-

ASIC-friendly embedded system design

environment. The tabu search technique is used to

construct the system model. However, the system

model evaluation is static, therefore it cannot

evaluate dynamic systems. In 1997, Else suggested

using simulated annealing and the tabu search

technique to separate hardware and software. In

order to build the scheduling table and provide a

foundation for the choice of software and hardware,

he outlined a model called the condition task graph

that makes use of a list scheduling algorithm. The

tabu search technique outperforms simulated

annealing in hardware and software partitioning,

according to experimental results [5]. A

hardware/software separation technique for IP-

based low-power embedded devices was first

presented by Henkel in 1999. The goal is to

minimise sleep and standby times to cut down on

energy use [6]. TherapodTiangong and colleagues

examined three heuristic techniques for hardware

and software co-design in 2002 [7], and concluded

that the tabu search strategy is better in hardware

and software partition over the genetic algorithm

and the simulated annealing algorithm. A hybrid

reconfigurable system was suggested by Michalis

D. Galanos in 2006.

 Studies on Time Management for

Organizing Tasks

Many areas of computer science and

telecommunications make use of the scheduling

issue, which falls under the category of

combinational optimization problems. Algorithm

design and complexity theory have many

commonalities. Liu and Leyland [9] initially

suggested research on task scheduling, however

their proposal glosses over certain technical issues.

Many models for real-time tasks are based on this

concept, and it even goes as far as the processor's

environment, where it may be used for scheduling

and feasibility analysis during algorithm

development. A non-dynamic scheduling approach

for periodic activities was presented in reference

[10], and it involves suitable grouping. Recent

years have seen a rise in platform resource and

processor usage as a result of the employment of

grouping technique and suitable scheduling policy.

China Taiwan National University researcher Hsu

Heng Rue studied the dynamic voltage scheduling

issue for scheduling periodic tasks in real time

under energy limitations [11]. Research into

parallel job scheduling on multiprocessors, often

represented as directed acyclic graphs (DAGs), has

progressed fast during the last 20 years. Scheduling

tasks using a directed acyclic graph (DAG) is a

method of coordinating the allocation of resources

and distributing work across available processors.

Overall, the task's execution time, power

consumption, area, and other indicators are optimal

provided that limitations are met. The issue is

intractable in NP-completeness. Since Becchi and

Crowley believe that task management is the key to

improving the computing performance of a multi-

processor platform, they designed a run-time

monitoring software to record the process's

dynamic behaviour as it moves from one processor

to another. Experiments demonstrate that the

overall system performance may be greatly

enhanced by using the dynamic process allocation

technique on a heterogeneous multi-processor

platform [12]. Genetic algorithm for multi-

processor job scheduling [13] is one example of a

novel approach that has been used in recent years

to handle the multiprocessor scheduling challenges.

Using this new way of computation increases the

precision of the final result. However, the

algorithm's performance might be enhanced. The

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 2 May 2022

dynamic placement of hardware jobs on the FPGA

is a key area of study for task scheduling on CPU +

FPGA structures. However, task allocation, task

migration, and other difficulties of mixed task

scheduling have received far less attention in the

literature [14].

FPGA-BASED RECONFIGURABLE

SYSTEM

Fast progress in reconfigurable technology for

embedded applications may be traced back to the

introduction of programmable devices, most

notably the field-programmable gate array (FPGA).

Because of advancements in reconfigurable

technology, the line between hardware and

software is becoming more porous. In a software-

controlled information processing system, the term

"reconfigurable" refers to the system's ability to be

transformed into a new information processing

system with the use of reusable resources in order

to meet the needs of a variety of applications. If

just marginally extra resources are required, the

system may be achieved in software and hardware

via the use of reconfigurable technology. One

option for completing the computation is to create a

specialised hardware circuit on FPGA, analogous

to an ASIC. However, FPGA circuits may be

tailored to specific jobs for optimal performance.

Using the properties of a large-scale programmable

device (FPGA) that can be repeatedly programmed

and configured, reconfigurable systems execute

circuitry reconfiguration in real time. While an

electronic system is operating in real time, its

circuitry may undergo dynamic changes. The core

concept is to make full or partial utilisation of the

inherent FPGA logic resources via time-sharing

reuse. It allows for the sequential operation of

discrete-time logic circuits on a single FPGA.

Transformable, Adaptable, and Dynamic Hardware

and Software

In 2005 [16], a specialised research group called

RAW coined the following definition of dynamic

reconfigurable: Dynamically reconfigurable

hardware architectures and devices are those that

may rapidly alter (during system operation) their

functionalities and connections. According to

Figure 1, the hardware platform, the mapping from

particular application to the hardware platform, and

the controls required during the running of the

system are the three most important topics for the

study of dynamic reconfigurable systems.

Figure1. Research contained in dynamic reconfiguration

system

The hardware that enables dynamic reconfiguration

may be broken down into two categories: context

configure devices and part reconfigurable configure

device [17]. The complicated controls and data

structures are often implemented in software, while

hardware is used for the more variable and time-

consuming aspects of the system [18].

RESULTS OF EXPERIMENTS

The following software simulation is performed to

test the hardware/software partitioning technique

provided here and the efficiency of the

configuration scheduling approach. To begin, we

construct a random task flow graph with 30, 40, 50,

60, 70, or 80 nodes using the TGFF tool (Windows

Version). A variety of data, including the time and

space required for reconfiguration and the expenses

associated with implementing new hardware and

software, are stored in each node. It is estimated

that for each work on the processor, the average

execution time of reconfigurable hardware is 10

times quicker than the average execution time of a

microprocessor[23]. This means that a

reconfigurable hardware implementation may

complete the same computing activities 10 times

faster. Hardware and software testing simulations

use an Inter 1GHz CPU, 512MB RAM, Linux, and

the GNU compiler. A single CPU and a Vertex II

series xc2v1000 FPGA with 1280 CLBs constitute

the assumed target system architecture. The fitness

value may be calculated in one of three ways, and

the results of each method are compared in Table1.

Table1. The best fitness value comparison of

GA, TS and GATS

Figure5 shows the correlation between fitness

levels. GATS clearly produces better results than

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 2 May 2022

both the genetic algorithm and the tab search

algorithm. It demonstrates the GATS algorithm's

strengths, including its ability to climb steep hills

and several starting points. The GATS method

takes more time to execute than the GA, TS

algorithm, but it produces more accurate results.

For this reason, the GATS algorithm may be used

in contexts where precision is of paramount

importance.

Figure 2. Fitness Value/Nodes Curve

Table2 shows the results using these three

algorithms in different scale applications, in which

S and NS stand for the scheduling strategies with

and without configuration prefetch respectively.

Table2 Data comparison of GA,TS and GATS

TASK SCHEDULING ALGORITHM

Traditional operating systems rely heavily on task

scheduling technology. Particularly in large-scale

applications, the hardware job cannot be set to the

reconfigurable device at once. This is especially

true in dynamically reconfigurable systems. As a

result, scheduling takes on more significance, with

the method used for scheduling having a direct

bearing on system performance. There are two

basic goals to arranging your tasks. First,

optimising the device setup procedure such that all

available resources are used effectively. Tasks that

may be completed sequentially or concurrently at

the same time should be scheduled to the device at

the same time. If the setup procedure takes too

long, slowing down the system may be a

bottleneck, but that impact can be mitigated by

optimising the configuration sequence. The

scheduling of reconfigurable hardware is likewise a

restricted layout challenge. Finding the schedule's

start time is just half the battle; you must also

determine the layout location of jobs in

reconfigurable hardware given a set of limitations

and a certain number of available resources. In this

last section, we'll use the genetic search algorithm

and the tabu search algorithm to determine the

optimal task execution order and the lowest

possible assignment time for the complete task

flow diagram, given the partitioning result.

Dynamic Acyclic Graph SchedulingIn reality, the

heuristics technique is the best option for handling

DAG scheduling issues when the weight values of

the nodes and edges are completely arbitrary. In

conclusion, the present DAG scheduling technique

may be broken down into four distinct types: List

Scheduling, Clustering, Task-Duplication-Based,

and Random Search. The list scheduling

algorithm's central tenet is to choose the highest

priority job from a list and perform it using

otherwise idle computer resources. This is

accomplished by first sorting the priority of nodes

in order to produce a scheduling list in which

already tasks appear. Clustering scheduling

algorithm works on the premise that, given an

infinite number of processors, the nodes of the

DAG task graph should be considered a cluster

when initiating scheduling. Subsequent scheduling

iterations should then merge all of these clusters

without increasing the overall task completion

time. In order to reduce the wait time between

tasks, the scheduling technique based on task

duplication involves doing a replica of the

precursor mission while the processor is idle. In

order to find a solution to a problem, the random

search approach mostly on chance. Although it

yields superior search results than competing

algorithms, its scheduling complexity means it is

seldom used. Algorithms for Scheduling

Configuration Prefetches. One of the defining

characteristics of a dynamically reconfigurable

hardware architecture or device is the ease with

which it may switch between different

configurations and use cases. The processing time

of systems that use dynamic reconfiguration may

be broken down into two distinct phases: the actual

work being done, and the time spent getting ready

for that work to begin. When the time it takes for

each module and for modules to communicate with

one another is factored in, the total effective

operating time increases. The delay in switching

functions that results from setting up the

appropriate configuration is called "preparation

time." Now, the time it takes to set up a

dynamically changeable system is a major

limitation. Hide the crucial software setup time and

boost the performance of reconfigurable devices to

reduce the time needed for preparation. When a

node in a DAG is scheduled for execution, the

primary notion is to setup the successor node in

advance. In addition, a configuration wait queue is

used to store nodes that need to be configured but

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 2 May 2022

cannot immediately begin work because the FPGA

configuration port is already in use.

CONCLUSIONS

Technologies for separating hardware and software

in programmable embedded systems are the topic

of this study. In-depth examinations of the features

of reconfigurable systems and the major problems

of dynamic reconfigurable technology are

presented. There is presented a model for

reconfigurable hardware architecture that includes a

microprocessor, a configuration controller,

reconfigurable hardware (FPGA), memory, and

configuration file memory. In addition, a directed

acyclic graph (DAG) is provided, which may be

used to simulate embedded systems that can

undergo configuration changes. After weighing the

pros and cons of both GA and TS, the GATS

algorithm was developed to mitigate the worst

aspects of both. The GATS method was effective

because it combined the advantages of genetic

algorithms with the tabu search algorithm. For

hybrid CPU+FPGA architectures, we offer DAG-

based scheduling techniques such configuration

prefetch and priority-based scheduling algorithm.

The GATS algorithm's system partition is analysed

with the help of scheduling algorithms. According

to the findings, it cuts down significantly on both

reconfiguration and total application execution

times.

REFERENCES

 [1] Parkash S, Parker A C. SOS: Synthesis of Application-

Specific Heterogeneous Multiprocessor Systems. Journal of

Parallel and Distributed Computing, Vol.16, 1992, pp: 338-

351.

 [2] Henkel and Ernst. High-Level Estimation Techniques for

Usage in Hardware/Software Co-Design. In IEEE/ACM Proc

of Asia and South Pacific Design Automation Conference,

Yokohama, Japan, February 1998: 353-360.

 [3]ERNST, R, J HENKEL, and T. BENNER. Hardware-

Software Co-Synthesis for Micro-Controllers[J], IEEE Design

& Test of Computer, 1993, 10(4): 64-75.

[4] Frank Slokar, Matthias Dorel Ralf Munzenberger, Richard

Hofmann. Hardware/Software Codesign and Rapid

Prototyping of Embedded Systems. IEEE Design & Test of

Computers, 2000, 17(2): 28-38.

[5] P ELES, Z PENG, K KUCHCINSKI, et al. System Level

Hardware/Software Partitioning Based on Simulated

Annealing and Tabu Search [J]. Design Automation for

Embedded Systems, 1997, 2(5): 5-32.

[6] HENKEL J. A Low Power Hardware/Software Partitioning

Approach for Core-Based Embedded System[C]. In:

Proceedings of the 36th ACM/IEEE Conference on Design

Automation Conference, 1999, 122-127.

 [7] THEERAYOD WIANGTONG, PETER Y.K CHEUNG,

WAYNE LUK. Comparing Three Heuristic Search Methods

for Functional Partitioning in Hardware-Software

Codesign[J]. Design Automation for Embedded Systems,

2002(6): 425-449.

 [8] MICHALIS D GALANIS, ATHANASIOS MILIDONIS,

GEORGE THEODORIDIS. A Method for Partitioning

Applications in Hybrid Reconfigurable Architectures[J]. Des

Automation Embedded System, 2006(10): 27-47.

 [9] Liu C ， Layland J. Scheduling algorithms for

multiprogramming in a hard real-time environment [J].

Journal of the ACM,1973,20(1):4-61.

[10] R. Gupta and G. De Micheli. System-level synthesis using

re-programmable components. Proceedings of EDAC, IEEE

Press, 1992, 2–7.

[11] Institute of Electrical and Electronics Engineers, New

York, USA, IEEE Standard VHDL Language Reference

Manual (IEEE Std 1076-1987), 1987.

 [12] J. Iyoda. ParTS: A Support Tool to Hardware/Software

Partitioning. Master thesis, Federal University of

Pernambuco, Brazil, May 2000 (in Portuguese).

 [13] L. Silva. An Algebraic Approach Hardware/Software

Partitioning. PhD. thesis, Federal University of Pernambuco,

Recife, Brazil, July 2000.

[14] C.Steiger, H.Walder and M.Platzner. Operating Systems

for Reconfigurable Embedded Platforms: Online Scheduling

of Real-Time Tasks[J].IEEE Transactions on Computers,

2004, 53(11): 1393-1407.

[15] R.B. Hughes and G. Musgrave. The lambda approach to

system verification. Hardware/Software Codesign, Kluwer

Academic Publisher, 1996, 427–451.

[16] A.Dehon. Comparing computing machines.Configurable

Computing: Technology and Applications of Proc.Of SPIE,

1998, 3526:124-133.

 [17] J. Iyoda, A. Sampaio, and L. Silva. ParTS: A partitioning

transformation system. Proceedings of FM99(World Congress

on Formal Methods), Vol. 1709, Lecture Notes in Computer

Science, 1999, 1400–1419.

[18] A. Kalavade and E. Lee. The extended partitioning

problem: Hardware/software mapping, scheduling and

implementation-bin selection. Design Automation for

Embedded Systems, Vol. 2, No. 2, 1997, 125–163.

[19] J. Madsen, J. Groge, P.V. Knudsen, M.E. Petersen, and

A. Haxthausen. Lycos: The lyngby co-synthesis system. Design

Automation of Embedded Systems, Vol. 2, No. 2, 1997, 195–

235.

[20] R. Niemann and P. Marwedel. An algorithm for

hardware/software partitioning using mixed integer

linearProgramming. Design Automation of Embedded

Systems, Vol. 2, 1997, No. 2, 165–193.

[21] D. Saha, R..S. Mitra, and A. Basu. Hardware/software

partitioning using genetic algorithm. Proceedings. of 10th

International Conference on VLSI Design, India, 1997, 155–

160.

http://www.ijpast.in/

