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Abstract—This paper describes an area and power-efficient VLSI approach for implementing the discrete wavelet transform on streaming 

multielectrode neurophysiological data in real time. The VLSI implementation is based on the lifting scheme for wavelet computation using the 

symmlet4 basis with quantized coefficients and integer fixed-point data precision to minimize hardware demands. The proposed design is driven by 

the need to compress neural signals recorded with high-density microelec- trode arrays implanted in the cortex prior to data telemetry. Our results 

indicate that signal integrity is not compromised by quan- tization down to 5-bit filter coefficient and 10-bit data precision at intermediate stages. 

Furthermore, results from analog simulation and modeling show that a hardware-minimized computational core executing filter steps sequentially is 

advantageous over the pipeline approach commonly used in DWT implementations. The design is compared to that of a B-spline approach that 

minimizes the number of multipliers at the expense of increasing the number of adders. The performance demonstrates that in vivo real-time DWT 

computation is feasible prior to data telemetry, permitting large savings in bandwidth requirements and communication costs given the severe 

limitations on size, energy consumption and power dissipation of an implantable device. 

 

Index Terms—B-spline, brain machine interface, lifting, micro- electrode arrays, neural signal processing, neuroprosthetic devices, wavelet transform. 

 

INTRODUCTION 

LSI implementation of the discrete wavelet transform (DWT) has 

been widely explored in the literature as a result of the transform 

efficiency and applicability to a wide range of signals, particularly 

image and video [1], [2]. These implementations are generally 

driven by the need to fulfill certain characteristics such as 

regularity, smoothness and linear 
Manuscript received August 16, 2006, revised December 11, 2006. This work was 
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phase of the scaling and wavelet filters, as well as perfect 

reconstruction of the decomposed signals [3]. 

In some applications, it is desirable to meet certain design criteria for 

VLSI implementation to enhance the overall system performance. For 

example, minimizing area and energy con- sumption of the DWT 

chip is highly desirable in wireless sensor network applications 

where resources are very scarce. In addition to miniaturized size, 

minimizing power dissipation is strongly sought to minimize tissue 

heating in some biomedical applications where the chip needs to be 

implanted subcuta- neously. 

In this paper, we deal primarily with the design of DWT VLSI 

architecture for an intracortical implant application. Motivated by 

recent advances in microfabrication technology, hundreds of 

microelectrodes can be feasibly implanted in the vicinity of small 

populations of neurons in the cortex [4], [5], opening new avenues for 

neuroscience research to unveil many mysteries about the connectivity 

and functionality of the nervous system at the single cell and population 

levels. Recent studies have shown that the activity of ensembles of 

cortical neurons monitored with these devices carry important 

information that can be used to extract control signals to drive 

neuroprosthetic limbs, thereby improving the lifestyle of severely  
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paralyzed patients [6]–[8]. 

One particular challenge with the implant technology is the need to 

transmit the ultra-high bandwidth neural data to the out- side world for 

further analysis. For example, a typical recording experiment with a 

100 microelectrode array sampled at 25 kHz per channel with 12-bit 

precision yields an aggregate data rate of 30 Mbps which is well 

beyond the reach of state-of-the-art wireless telemetry. Other 

significant challenges consist of the need to fit circuitry within cm 

for the entire signal pro- cessing system, and operate the chip at very 

low power (no more than 8–10 mW) to prevent temperature rise above 1 

C that may cause neural tissue damage. In previous studies, we have 

shown that the DWT enables efficient compression of the neural data 

while maintaining high signal fidelity [9]–[11]. To be imple- mented 

in an actual implanted device, chip size, computational complexity 

and signal fidelity must be balanced to create an op- timal application-

specific integrated circuit (ASIC) design tai- lored to this application. 

Generally speaking, the case of computing the DWT for high 

throughput streaming data has not been fully explored [12]. It has 

been argued that a lifting scheme [13] provides the fewest arithmetic 

operations and in-place computations, allowing larger savings in 

power consumption but at the expense of 
 

 
 

Fig. 1. Block diagram of an implantable neural system illustrating the mixed signal 

processing proposed. 

 

longer critical path than that of convolution-based ones [13]. Recent 

work by Huang et al. [14] focused on analyzing DWT architectures 

with respect to tradeoffs between critical path and internal buffer 

implementations. Such critical path can be shortened using pipelining 

with additional registers or using a so-called flipping structure with 

fixed number of registers [15]. The B-spline approach [16], on the 

other hand, requires fewer multipliers than lifting, replacing them 

with adders that may permit a smaller chip area [17]. Nonetheless, 

most of the re- ported hardware approaches focus on computational 

speed and do not adequately address severe power and area 

constraints. By comparing with other implementations of the DWT in 

this paper, we demonstrate that the appropriate compromise among 

power, size and speed of computations is achieved with a se- 

quential implementation of integer arithmetic lifting approach. The 

paper is organized as follows. In Section II, the classical single 

channel one-dimensional (1-D) DWT and lifting DWT are 

introduced. Section III describes the motivation for integer lifting 

DWT and approaches to efficiently map the algorithm to hardware 

for a single channel, single level DWT decomposi- tion. In Section IV, 

proposed architectures for integer lifting are described and analysed. 

Section V describes hardware consid- erations of the proposed 

architecture for multiple channels and multiple levels of 

decomposition, and Section VI describes per- 

formance comparisons and overall results. 

THEORY 

 
A typical state-of-the-art implantable neural interface 

system as depicted in Fig. 1 contains an analog front end 

consisting of pre-amplification, multiplexing and A/D 

conversion prior to extra-cutaneous transmission. An analog 

front end integrated onto a 64-electrode array would occupy 

4.3 mm in 3 m tech- nology and would dissipate 0.8 mW of 

power [5]. This tradi- tional approach is not well suited for 

wireless data transmis- sion due to power demands 

associated with the resulting large data throughput. In the 

proposed approach, the power and chip area of the analog 

front end is reduced by using contemporary mixed-signal 

VLSI design approaches and more modern fabri- cation 

processes (e.g., 0.18 m), allowing advanced signal pro- 

cessing to take place within the implanted system without 

sig- nificant increase in the chip size. Power- and area-

efficient im- plementations of the spatial filter, the DWT, 

and the encoder blocks would provide on-chip signal 

processing and data com- pression, enabling wireless 

transmission by reducing bandwidth requirements. In this 

paper, we only discuss VLSI implementa- tion of the DWT 

block. mostly contained in the short transients -or spikes- 

above the noise level that result from the activity of an 

unknown number of neurons. It can be observed that the 

sparsity introduced by the DWT compaction property 

enables very few “large” co- efficients to capture most of 

the spikes’ energy, while leaving many “small” coefficients 

attributed to noise. This property per- mits the later ones to be 

thresholded [19], yielding the denoised signal shown. 

For near-optimal data compression, a wavelet basis 

needs to be selected to best approximate the neural signal 

waveform with the minimal number of data coefficients. A 

compromise be- tween signal fidelity and ease of hardware 

implementation has to be made. A near-optimal choice 

was proposed in [9] from a compression standpoint and 

demonstrated that the biorthog- onal and the symmlet4 

wavelet functions are advantageous over other wavelet basis 

families for processing neural signals. From a hardware 

implementation viewpoint, the symmlet4 family has much 

smaller support size for similar number of vanishing mo- 

ments compared to the biorthogonal basis [20]. In addition, 

they can be implemented in operations. 

 
A. Single Channel Lifting-Based Wavelet Transform 

The lifting scheme [12] illustrated in Fig. 3 is an 

alternative approach to computing the DWT. It is based on 

three steps: First, splitting the data at level   into even and 

odd samples  and , 

respectively; Second, predicting the odd samples from the 

even samples such that the prediction error becomes the 

high pass coefficients  ; and third, 

updating the even samples   with to 

obtain the approximation coefficients . This process is 

repeated times. At an arbitrary prediction and update 

step , the prediction and update filters  and   , 

respectively, are obtained by factorizing the wavelet filters   and  into lifting steps. The data at each step, after applying the new filters are labeled as and       , respectively. The last step is a multiplication by a scaling factor  to obtain the approximation and 

details  and   of the 

next level. 

A lifting factorization of the symmlet4 wavelet basis 

amounts to the following filtering steps: 

 
 



 

  

         
 

  
 

         
 

(7) 

Alternatively, a B-spline approach for DWT computation 

[16] is based on factorizing the filters as 

 

                                                                        (8) 

where  and  are known as the distributed parts, 

 and  are normalization factors [17], and are the orders 

of the B-spline parts, respectively. For the symmlet4, this 

factorization can be expressed as 

 

  (9) 

where the coefficients  through  are listed in Table II. 

Since the B-spline parts in both filters can be expressed as 

 
                                    (10) 

hey can be typically implemented using simple shifting and 

ad- dition. The polyphase decomposition similar to lifting 

can there- fore be performed on the distributed parts  

and [16]. This is achieved by splitting the 

distributed parts into odd and even components  

and ,  and , respec- tively. For example, 

the low-pass even distributed part can be represented as 

                              , and likewise for the re- maining 

components. The benefit in the B-spline method is a 

reduction in the number of floating point multiplications 

at the expense of more additions [17]. Table III compares 

the compu- tational requirements of lifting and B-spline 

DWT implemen- tations along with traditional 

convolution. In B-spline, four x4 multiplications are 

replaced by shifts and two x6 multiplications are replaced 

by shifts and additions . Relative to 

lifting, B-spline requires two fewer multiplications at the 

expense of ten more additions for one level of 

decomposition. Nevertheless, as the detailed low-

power/area DWT implementation below will show, any 

benefit to B-spline is diminished for multilevel mul- 

tichannel decomposition. 

B. Hardware Considerations 

Power and area requirements of the DWT hardware are 

determined largely by the complexity of the computational 

circuitry and the required memory. To systematically 

reduce hardware requirements, we have explored different 

options to reduce computation and memory requirements at 

the algorithm level and analyzed their impact on signal 

integrity to determine an optimal approach. We 

summarize below two key ideas that contribute largely to 

the reduction of circuit complexity and memory 

requirements that are discussed in subsequent sections, 

while more details of this analysis are further provided in 

Section V. 

1) Integer Approximation: Fixed-point integer 

approxima- tion limits the range and precision of data values 

but greatly re- duces the computational demand and memory 

requirements for processing and storage. To explore the 

potential of utilizing in- teger approximation in the proposed 

system, we observed that neural signal data will be entering 

the system through an A/D converter and will thus inherently 

be integer valued within a pre- scribed range. The data is first 

scaled to obtain data samples within a 10-bit integer 

precision. The integer approximation is then computed for 

the scaled data. The integer-to-integer trans- formation [22] 

involves rounding-off the result of the lifting fil- ters     and  

that are used to filter odd and even data samples, 

respectively. The last step that requires scaling by   and 

 is omitted. Hence, the dynamic range of the transform 

at each level will now change by . As our results will 

demonstrate (Section V), the minimized circuit complexity 

associated with integer representation should be well suited 

to this application provided that data precision is sufficient 

to maintain signal in- tegrity. 

Quantization of the Filter Coefficients: Rounding-off wavelet filter 

coefficient values to yield a fixed point integer precision format can 

further reduce the computation and memory requirements. 

Implementing lifting-based wavelet transform with only integer 

computational hardware requires the filter coefficients be represented 

as integers along with the sampled data. Tables I and II show the 

scaled filter coefficients -   and -   for the 

symmlet4 basis. These coefficients are further quantized into integer 

values. The level of quantization has a significant impact on the 

complexity of computational hardware. We quantified the effect of 

the round off and quantization errors on the signal fidelity as a function 

of multiplier complexity [21]. Our results (Section V) demonstrate that 

6 bits (5 bits 1 sign bit) coefficient quantization can adequately 

preserve signal integrity. 

I. SINGLE-CHANNEL SINGLE-LEVEL HARDWARE DESIGN 

In a first-order analysis, the area of a CMOS integrated 

circuit is proportional to the number of transistors 

required, and power consumption is proportional to the 

product of the number of transistors and the clocking 

frequency. Through transistor-level custom circuit 

design, circuit area and power consumption can be 

further reduced, with significant improvement in 

efficiency over field-programmable gate arrays (FPGA) 

or standard cell ASIC implementations. 

Parallel execution of the DWT filter steps using a 

pipelined implementation is known to provide efficient 

hardware utiliza- tion and fast computation. In fact, a 

vast majority of the re- ported hardware 

implementations for lifting-based DWT rely on pipeline 

structures [20], [23], [24]. However, these circuits target 

image and video applications where speed has highest pri- 

ority and the wavelet basis is chosen to optimize signal 

repre- sentation. A different approach is required to 

meet the power and area constraints imposed by 

implantability requirements, the low bandwidth of neural 

signals, and the type of signals ob- served. Two 

promising integer lifting DWT implementations, a 

pipeline approach and a sequential scheme, have been 

optimized and compared for the symmlet4 factorization 

and data/coeffi- cient quantization described above. 

Furthermore, the hardware requirements for lifting DWT 



 

 

                             6 

 

have been compared to a B-spline implementation to 

verify the advantage of lifting in the applica- tion at hand. 

 
A. Computation Core Design 

To begin, notice that the arithmetic operations in the 

lifting scheme in (7) have a noticeable regularity that 

permits any ar- bitrary step to be defined as 

 

 
  (11) 

 

where  , , , and take the values of and    in 

(7), and and  are the quantized filter coefficients given 

in Table I. The regularity of this repeated operation 

indicates that an opti- mized integer DWT 

implementation would include a hardware unit 

specifically designed to evaluate (11). By tailoring this 

cir- cuit to the near-optimal data and coefficient bit width 

described above, a single computation core (CC) 

suitable for all lifting 

filter steps in (7) can be obtained. 

Fig. 4 describes a CC block that was custom designed 

to min- imize transistor count and power consumption 

while supporting up to 10-bit data and 6-bit filter 

coefficients, both in signed integer formats. The CC 

employs a simple hardwired shifting operation to 

remove the x16 scaling factor from the quantized 

coefficients. It generates a 10-bit output and an overflow 

error bit, though the lifting scheme should inherently 

maintain results within 10-bit magnitude. Several 

multiplier topologies were ex- perimentally compared to 

define the most efficient option for 

6 10-bit operations. A Wallace tree multiplier with 

modified Booth recoding was implemented along with a 

custom 3-term adder optimized for power rather than 

speed. The fixed x16 scaled integer coefficients were 

modified for Booth recording before being stored in on-

chip ROM to eliminate the need for 
 

 
 

Fig. 4. Customized computation core for integer-lifting wavelet transform 
using binary scaled filter coefficients. 

 

an on-chip encoder. The resulting circuit very efficiently 

imple- ments steps 2-4 of (7) and can also compute steps 1 

and 5 using a control signal that shuts off the unused 

multiplier to eliminate unnecessary power consumption. 
 

B. Real-Time Integer DWT Processing Architectures 

To identify the most efficient architecture for executing 

the entire set of lifting equations in real time on a 

continuous flow of input data samples, let us first re-define 

the filter equations in (7) with a more hardware-friendly 

notation. Building on the concept of a fixed three-term 

computation core described above, the notation in (11) can be 

used to rewrite (7) at a specific cycle, 

, as 

 
 

   
 

  
 

  
 

       
 

       

                                           (12) 

where    and    are the input data pair of samples, the 

outputs of steps 1–5 are - , coefficients -  have 

been replaced by     -     and -  to indicate the CC input 

to which they will be applied, and the superscripts represent 

the computation cycle in which the data value was 

generated. The 2nd and 3rd terms in step 2 have been 

swapped to maintain a regular data flow described further 

below. Steps 2 and 5 require data from future computation 

cycles. Thus, in order to compute the five filter steps in real 

time, where all inputs must be available from prior 

computations, execution must span three computation 

cycles. During cycle the following five steps can be 

executed in real time: 

 
 

    
 

   
 

       
 

        

                                                               (13) 

Notice that each step in (13) relies only on previously 

calculated data, provided these steps are performed 

sequentially. Having rearranged the terms in step 2 of (7), 

the output of each step in 

(13) becomes the 2nd term input to the subsequent step, 

which is useful for efficient hardware implementation. 

Notice also that most of the data values needed are 

generated within the same 

cycle; only the four values in (13) with boldface type (two 

are re- peated twice) are generated in a previous cycle. 

Thus, if the filter steps are implemented sequentially, only 

four storage/delay reg- isters are required. 

Although (13) does allow real time computation of the 

filter steps in sequence, dependencies within the steps 

in (13) pre- clude parallel execution necessary for a 

pipeline implementa- tion. To make each filter step 

dependent only on data from prior cycles, execution must 

span seven data samples. During cycle the following 

sequence could be computed without any 

dependency on current or future cycle results: 

 

 

   

 
 

  
 



 

    
 

    

                                                            (14) 

Here, the second term of each computation relies on the 

output from the preceding step during the previous 

computation cycle. In a pipeline, these four second-term 

data inputs could be held in a memory with one-cycle delay. 

The first and third terms require seven additional data 

values from prior cycles, one of which is needed twice, 

resulting in six independent values. One of the values (  

in step 2) needs a two-cycle delay, requiring an extra 

delay register. Thus, a total of 11 storage/delay registers 

would be required to hold all of the necessary values from 

prior cycles for a pipeline implementation. 
 

C. Pipeline Design 

The integer DWT filter equations in (14) can be 

implemented simultaneously in a pipeline structure that 

permits real time, continuous signal processing to take 

place. Fig. 5(a) illustrates a pipeline structure designed 

around the customized three-term computation core from 

Fig. 4. The output of each of the five filter stages is 

held by a darkly shaded pipeline register, and other 

registers provide the necessary delays. By clocking all of 

the registers out of phase from the CC blocks, continuous 

oper- ation is provided. The computation latency is seven 

cycles, due to the five pipeline stages and the two delay 

cycles built into (14). The temporal latency for detail

 and approximation results is 14 samples because 

each computation cycle op- erates on a pair of data 

samples. The overall pipelined computa- tional node 

consists of five CC blocks, 15 10-bit registers, and an 8

 6b coefficient ROM. An additional delay phase 

could be added at the  output to synchronize the 

latency of the detail 

and approximation outputs. 
 

D. Sequential Design 

Although the pipeline structure achieves fast integer 

DWT processing via a large hardware overhead, it is very 

resource-ef- ficient and thus well suited for low-power, 

single channel, neural signal processing. However, as 

discussed below, scaling the pipeline for multiple data 

channels and/or multiple decomposi- tion levels begins to 

break down the efficiency of the pipeline structure. An 

alternative approach is to process each of the filter steps 

(or pipeline stages) sequentially using a single CC 

 

 
 

Fig. 5. (a) Pipeline structure for integer-lifting wavelet transform 
with data notations to match filter equations in (11) at a single point 
in time. (b) Sequential structure over five operation phases for 
comparison to the pipeline structure. 

 

block and a fraction of the registers required by the 

pipeline. This approach takes advantage of the low 

bandwidth of neural signals that permits the CC to be 

clocked much faster than the input data sampling frequency 

(typically in the range of 25–40 kHz). 

Sequential processing of the integer DWT filter steps can 

be achieved using (13), where each stage depends only on 

data from previous cycles or from same-cycle outputs 

generated in a preceding step. The simplicity of data 

dependencies relative to the pipeline structure can be 

observed from Fig. 5(b), which illustrates the sequential 

structure in a format comparable to the pipeline. Here, each 

section of the circuit represents a temporal phase rather than 

a physical stage. An important observation is that 

significantly fewer registers are needed because the inputs 

of subsequent phases rely largely on preceding outputs from 

the same computation cycle. Therefore, it can be shown that 

the overall sequential DWT circuit can be efficiently 

implemented with six 10-bit registers to manage data flow 

between computa- tion cycles, a single CC block, an 8   6b 

coefficient ROM, and a simple control block to direct data 

from memory to the appro- priate CC input during each 

phase of operation. Sequential exe- cution has a computation 

latency of two cycles, and the temporal latency for detail and 

approximation results is four samples. 

E. Analysis and Comparison 

As stated above, the sequential approach requires only 

one CC unit and six 10-bit memory registers compared to 

five CC units and 15 registers for the pipeline circuit. The 

sequential de- sign does, however, require additional 

multiplexers and control logic to redirect data and coefficients 

to CC inputs, which are not necessary in the inherently 
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hardware-efficient pipeline design. This added circuitry will 

make the critical path of the sequentialcircuit longer than 

that of the pipeline structure. Furthermore, to maintain the 

same throughput, the sequential design must be operated at 

five times the clock rate of the pipeline. Because data is 

processed in a real-time streaming mode, neither approach re- 

quires a large input data buffer. 

Both architectures have been thoroughly analyzed to 

deter- mine which approach is best suited to the power 

and area re- quirements of an implantable neural signal 

processor. To first validate that both approaches can 

achieve the application speed requirements, a custom 

computation core has been implemented in CMOS, and 

analog simulations show the critical path delay is 

6.5 ns in 0.5- m technology. Thus, approximately 6000 

compu- tation cycles could be preformed within a 

nominal 25-kHz sam- pling frequency for neural signals. 

This indicates that speed is not a critical design 

constraint and that circuit optimization can focus on chip 

area and power consumption. 

Using custom design techniques, the chip area, , 

required to implement both approaches will be roughly 

proportional to the number of transistors in the circuit 

 

 
  (15) 

 

where is the area per transistor and is the number 

of tran- sistors in the th circuit block. Empirical 

observations of seve

custom ral circuit layouts shows that a single value for

 reason- ably approximates all of the integer 

DWT blocks, especially for comparing two similar 

circuits. Conservative values of 80 m per transistor for 

0.5- m technology and 5 m per transistor for 0.13- m 

technology have been selected to estimate the re- quired 

chip real estate. 

TABLE IV 
CHARACTERISTICS OF SINGLE-LEVEL, SINGLE-CHANNEL INTEGER 

DWT HARDWARE FOR PIPELINE AND SEQUENTIAL CONFIGURATIONS 

AT TWO TECHNOLOGY NODES 

 

 
Although absolute power consumption is inherently 

difficult to estimate, for the purpose of comparing the two 

design alter- natives, dynamic power can be determined as 

 
 

                                                         
(16) 

 
where VDD is the supply voltage and  is the data sampling 

fre- quency (nominally 25 kHz). The parameter  accounts 

for the average output load capacitance, the average 

number of tran- sistors per output transition, and the 

average output transitions per clock cycle. This parameter is 

a function of both fabrication process and circuit topology 

and has been derived empirically as 3 and 0.75 fF for 0.5- 

m and 0.13- m technology, respec- tively. The variable is 

the clock rate scaling factor relative to  for each block 

such that the clocking frequency of each cir- cuit block is       

. For example, in the pipeline configuration, the 

computation core will be clocked only every other cycle, i.e., 

, so that the first of the pair of samples to be processed 

can be acquired in the idle cycle. Correspondingly, because 

the se- quential configuration must be clocked at five times 

the rate of the pipeline, it will have an average clocking rate 

of        . In the pipeline approach, all of the blocks are 

clocked at the same frequency, except the coefficient 

memory that is static in both designs. In the sequential 

implementation, one of the multipliers is idle during two of 

the five stages, so we estimate the sequen- tial CC clock 

scaling factor to be 2. Similarly, in the sequential controller, 

most of the circuits are clocked at while 

others are clocked at , so we estimate its clock scaling 

factor to be 2 as well. 

Table IV lists the total number of transistors in each 

approach along with the area and power estimated from (15) 

and (16) for both 0.5 m and 0.13- m technology. As 

expected, the pipeline computation unit requires nearly three 

times the area of the se- quential approach and would 

occupy about 21% of the chip area on a 3 3 mm chip in 

0.5 m technology or 5% of a 

1.5 1.5 mm chip in a 0.13- m process. The power model 

pre- dicts that the sequential approach will consume only 

23% more power than the pipeline. The larger power 

consumption of the sequential approach can be attributed to 

its requirement for a more complex controller and the need to 

move more data around within the single computation core. 

Overall, these results show a tradeoff between area and 

power consumption between the two approaches. 

F. Lifting Versus B-Spline 

As an alternative to lifting, the B-spline method was 

investi- gated because it permits a reduction in the number 

of floating 

point multiplications at the expense of more additions. 

How- ever, as demonstrated above, for implantable 

applications, in- teger processing is preferred. Table III 

shows that B-spline saves two multiplications at the cost 

of 10 additions per cycle com- pared to lifting. Designs 

using Verilog synthesized to a custom library have shown 

that, for a pipeline implementation, B-spline requires 

significantly less 24-bit floating point hardware, but for 

integer processing (with 10-bit data and 6-bit 

coefficients) B-spline saves only 6% compared to lifting 

[25]. Furthermore, B-spline can not be as efficiently 

implemented in a sequential structure, where lifting has 

been shown to require only 53% of the B-spline 

hardware resources for integer DWT. While B-spline 



 

implementations do have slightly less delay, speed is not 

a design constraint. Relative memory requirements are a 

more important issue in multichannel implementations 

as we show next. 

 

II. MULTILEVEL AND MULTICHANNEL INTEGER DWT IMPLEMENTATION 

 

A. Hardware Design 

In implantable neuroprosthetic applications where a 

typical microelectrode array has many electrodes 

integrated on a single device, there is a strong need to 

support integer DWT computa- tions with multiple levels 

of decomposition for multiple signal channels pseudo-

simultaneously (i.e., within one sampling pe- riod). The 

lifting scheme and the two integer DWT implementa- tions 

described above have been chosen because of their 

ability to scale to an arbitrary number of channels and 

levels. Consid- ering that both of the single channel, 

single level, integer DWT approaches discussed above 

require a substantial portion of a small chip, it is 

unreasonable to pursue a hardware intensive solution 

that utilizes a “copy” of the circuit for each channel and 

level. This would dramatically increase circuit area 

beyond limitations for implantable systems. Given the 

available com- putation bandwidth of the CC block, the 

more appropriate solu- tion is to scale the clocking 

frequency as needed to sequentially compute filter 

equations for multiple channels and/or levels. Although 

clock scaling will still cause power to increase with 

channel and level, the circuit area required will be 

minimized and the power density can be held within the 

acceptable appli- cation limits. 

Both the pipeline and sequential architectures can be 

scaled to multiple channels and/or levels by reusing the 

computational node hardware and increasing the clocking 

frequency to com- plete all computations within the 

input sample period. In both approaches, registers within 

the computational node hold data necessary for the next 

cycle’s calculation. To sequentially reuse the 

computational node, some register values for a specific 

channel/level must be saved so they will be available 

when that channel/level is next processed in a future 

cycle. Fig. 6 shows the multichannel, multilevel, 

implementations of the pipeline and sequential 

configurations. 

1) Multichannel Considerations: In scaling the 

system to multiple data channels, the computation clock 

rate is scaled by the number of channels and a new 

memory block is added to save critical register data for 

each channel. For the pipeline, the 11 registers must be 

stored, while for the sequential circuit only 
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Fig. 6. Multilevel, multichannel implementations of (a) pipeline structure and 

(b) sequential structure. 

 

four registers need to be saved. These registers are marked 

with an “s” in Fig. 4. An on-chip SRAM can be interfaced to 

the computational node to store register values, and the size 

of the SRAM will grow linearly with the number of channels. 

Note for comparison that a sequential B-spline 

implementation requires eight register values to be stored. 

2) Multilevel Considerations: When expanding the DWT 

to multiple levels, notice that each level of dyadic DWT 

decom- position introduces only half the number of 

computations as the previous level. More explicitly, the 

number of results, , per number of samples,   , for an 

arbitrary level  can be expressed as 

 
(17) 

 

 
which is always less than twice the number of samples. 

Con- sider also that, to process multichannel input pairs, 

before each computation cycle the system must implement 

one idle cycle, wherein the first input of the pair is stored 

for each channel. Thus, if the level-one computations are 

executed in, say, the even cycles, the higher level computations 

can be executed in the odd cycles [26] while input samples 

(one of the pair) are being stored for the next level-one 

computation. This is illustrated in Fig. 7. If we define the 

usage rate,  , as the average 

number of cycles for a single computation to occur, then 

for the first decomposition level the usage rate is one half, 

i.e.,          , and the computational hardware is idle 

during the other half of the cycles. Moreover,

 approaches 1.0 as the number 

of 

levels increase, i.e., 
 

 

 
 

 Fig. 7. Sequential 

processing scheme for multilevel, 

multichannel computa- tion. At the top of this 

sequence, one DWT result is available at each 

decompo- sition level. With the four levels 

shown, one idle computation cycle will occur 

every 16 cycles. 

 
As the number of levels increases, the usage rate will 

increase toward maximum utilization without increasing 

computation frequency. For each level of decomposition 

beyond the first, one memory block per channel is 

required to store values held in the computational node 

registers. The registers to be stored are the same as those 

described in the multichannel case above. 

 

B. Area and Power Modeling 

For multiple channels/levels, the need to copy the entire 

set of pipeline registers to memory effectively negates 

one of the pri- mary advantages of the pipeline over the 

sequential approach. On the other hand, the sequential 

processing circuit is inherently designed to swap new data 

in/out each clock cycle. To quantita- tively compare these 

two approaches, circuit models have been developed to 

describe the power and area for each option as a 

function of the number of channels and the number of 

decom- position levels. The following models assume 

the hardware (in- cluding control logic) has been scaled to 

manage multiple chan- nels and levels, though they are 

still valid for single channel, single level 

implementations. 

A general expression for calculating the area of both 

the pipeline and the sequential approaches as a function 

of channels and levels is: 

 

(19) 

where  is the technology-dependent, empirically-

derived av- erage area per transistor,  is the number 

of transistors that remain constant with level and channel 

in the th circuit block, and  are the number of 

transistors that scale with channel and level, 

respectively,  is the number of channels, and is the number decomposition levels. Although this equation only roughly estimates routing area, it is very useful for comparative 

analysis since both approaches consist of similar arithmetic and 

memory blocks. 

Using (16), a general expression for power consumption as 

a function of channels and levels, which is valid for both ap- 

proaches being considered, is given by 
 

 

  (20) 

where is the channel clock frequency scaling factors,  

is a level usage factor, and all other variables are as previously 

https://www.researchgate.net/publication/3078727_De-Noising_by_Soft-Thresholding?el=1_x_8&enrichId=rgreq-38c1e4cca676a268becc1870c16d4b9d-XXX&enrichSource=Y292ZXJQYWdlOzM0NTE1NTc7QVM6MTk4MjI1NzY5MzA4MTYzQDE0MjQyNzIxMTQ2NjU%3D
https://www.researchgate.net/publication/2560770_A_VLSI_Architecture_for_Lifting-Based_Forward_and_Inverse_Wavelet_Transform?el=1_x_8&enrichId=rgreq-38c1e4cca676a268becc1870c16d4b9d-XXX&enrichSource=Y292ZXJQYWdlOzM0NTE1NTc7QVM6MTk4MjI1NzY5MzA4MTYzQDE0MjQyNzIxMTQ2NjU%3D


 

defined. Recall that the clock scaling factor was chosen to 

accommodate the fact that, in single level designs, every other 

cycle was idle while the data pair was being collected. To main- 

tain a consistent definition of variables in multilevel implemen- 

tations, which utilize the idle cycles to process all higher levels, 

the factor of 2 is introduced at the beginning of (20). 

Both the pipeline and sequential architectures have been de- 

veloped to define the model parameters given in Table V, which 

are valid for and       . The computational node cir- 

cuitry, including control logic, has been scaled up to manage 

an arbitrary number of levels and channels, with negligible per 

channel/level increase in complexity. Thus, only data memory 

increases with the number of channels. Clocking frequency of 

the computational node circuits must scale with channel, while 

each memory block is only accessed once per cycle regardless 

of the number of channels. The controller frequency scales lin- 

early with channel but is assumed to remain constant with level. 

For all other circuit blocks, the usage rate accounts for 

inactive computation cycles. 
 

V. RESULTS AND DISCUSSION 
 

A. Signal Integrity 

We have assessed the effects of data and filter coefficient 

ap- proximations on the quality of the signals obtained after 

recon- struction. We quantified the performance in terms of 

the com- plexity of hardware required to implement (7) and 

illustrated the results in Fig. 8. The wavelet filter 

coefficients were quantized to different resolutions ranging 

from 4 to 12 bits, with the 6-bit values given in Table I. The 

data was also quantized in the same range. The effective 

signal-to-noise ratio (eSNR), defined as the log ratio in dB of 

the peak spike power to the background noise power is 

illustrated in Fig. 8(a) versus multiplier complexity in 

equivalent bit addition/sample for an average input SNR 

of 6 dB. These results demonstrate that, with sufficient 

precision, the use of integer computations does not result in 

significant signal degradation as quantified by the observed 

output SNR. Specifi- cally, with quantization of filter 

coefficients to 6 bits and data to 10 bits, the output SNR is 

within 1% of its average input value. In Fig. 8(b), the 

spectrum of the residual quantization and round-off noise 

is also illustrated to demonstrate the loss in the signal 

power-spectral density in different cases. In the case of 4-

bit quantization of the filter coefficients, the residual 

noise frequency content is closest to that of the original 

signal in the low frequency range (subband 0–1 kHz), 

indicating that some signal loss may have occurred in that 

band. On the other hand, Fig. 8. (a) Effect of round off and 

quantization errors on the signal fidelity as a function of multiplier 

complexity. (b) Power-spectral density of the original data and the residual 

noise for integer approximated data and quantized wavelet filter coefficients 

for various bit widths. (c) Example spike waveforms obtained in each case. 

 

filter quantization of 6 bit or higher results in residual 

noise that consists of high frequency components above 8 

kHz, which is outside 

the frequency range of neural spike trains and local field 

TABLE V 
MODEL PARAMETERS FOR AREA AND POWER CALCULATIONS 
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Fig. 9. Comparison of multichannel/multilevel pipeline and sequential integer DWT approaches: relative chip area and relative power consumption versus number of levels 
and channels. 

 

 
potentials (LFPs) [27]. A representative example of spike 

wave- forms in each case is illustrated in Fig. 8(c) to 

demonstrate the very negligible effect of this process on the 

quality of the av- erage spike waveform. Taking these 

results all together, it is clear that the choice of 6/10-bit 

coefficient/data quantization offers the best compromise 

among multiplier complexity and signal fidelity as 

concluded earlier. 

We should emphasize that perfect reconstruction of 

signals off chip may not be always needed. Typically, 

neural signals contain the activity of multiple neurons that 

need to be sorted out, and this information remains in the 

compressed data at the output of the DWT block. We have 

shown elsewhere that sorting the multi source neuronal 

signals can be performed directly on the wavelet transformed 

data [10], [28], and this topic is outside the scope of this 

paper. 
 

B. Multichannel/Level Implementations 

Using (19) and Table V, the relative area for pipeline and 

sequential architectures as a function of levels and channels 

is shown in Fig. 9. These results demonstrate that the 

pipeline re- quires significantly more chip area than the 

sequential approach and its area needs grow faster with 

larger number of channels and levels. This is due primarily to 

the relatively large number of registers that must be stored per 

channel or level (11 for pipeline compared to 4 for 

sequential). Fig. 9 also shows the relative 
 

 
 

Fig. 10. Power-area product versus level and channel for pipeline and 

sequen- tial approaches. 
 

 
 

power consumption for the two approaches based on 

(20). The linear increase in power per channel is slightly 

higher with the sequential design than the pipeline. 

Although there is a sharp jump in power from to

 , further increases in 

levels require less and less additional power as the usage 

rate approaches one. The most important observation 

from Fig. 9 is that the power consumption of the two 

implementations is al- most similar but the sequential 

design requires significantly less chip area. 

Due to size and power constraints in implantable 

systems, an important figure of merit is the relative area-

power product, which is plotted in Fig. 10 versus both level 

and channel. Fig. 10 illustrates that the sequential 

approach is increasingly prefer- able as the number of 

channels or the number of decomposi- tion levels 

increases. The only significant benefits of the pipeline 

within the enforced design constraints are that it can be 

clocked at a higher rate and that it takes fewer clock cycles 



 

to complete a computation. Both of these factors result in 

the pipeline having a higher threshold on the maximum 

number of channels that can be simultaneously processed. 

However, based on the parameters defined above, the 

sequential execution architecture has an esti- mated 

maximum of around 500 data channels (at ). 

Given the chip area limitations, the area-efficient 

sequential approach is best suited for this application. In 

an example implementa- tion with 32 channels and 4 

levels of decomposition, the models predict that the 

sequential approach will require 0.692 mm and 

50.1 in 0.13- m CMOS, indicating the feasibility of per- 

forming front-end signal processing within the 

constraints of an implanted device. 

Another interesting result of this study is the 

comparison of the area required by the computational 

node circuitry versus the area required by the memory 

that holds register values required for 

multichannel/multilevel operation. Fig. 11 illustrates this 

re- sult for both sequential and pipeline configurations as 

a func- tion of channels at . Notice with the 

pipeline that memory dominates the area when the 

number of channels is greater than four. For the 

sequential design, memory dominates when the number 

of channels is greater than ten. With 10-bit data resolu- 

tion, at and           , the pipeline requires over 14 

000 bits 
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Fig. 11. Relative area versus channels of data memory compared to all 

other blocks for sequential and pipeline designs, at L = 4. 

 

 
 

of SRAM, while the sequential circuit requires only about 

5000 bits. Reducing memory requirements becomes 

increasingly im- portant in multichannel applications, again 

highlighting the ad- vantage of the sequential approach. 

 

C. Lifting versus B-Spline 

As illustrated in Fig. 11, the memory required to store 

intermediate calculation values will dominate circuit area 

in multichannel implementations. Careful analysis of an 

opti- mized sequential B-spline implementation [25] has 

shown that eight memory registers are required per 

channel/level, compared to four for sequential lifting and 

11 for pipeline lifting. Based on this information and the 

comparisons above, B-spline has a slight advantage over 

pipeline lifting but incurs a significant penalty relative to 

sequential lifting in terms of area. Furthermore, the 

sequential lifting implementation requires only about 25% 

of the dynamic power of sequential B-spline, primarily 

because B-spline takes 18 cycles to exe- cute sequentially 

compared to 5 cycles for lifting [25]. The advantage of 

sequential lifting becomes even more profound when static 

power is considered, especially in deep submicron 

technologies. Fig. 12 provides an additional comparison, 

where the number of required gates, synthesized from Verilog 

descrip- tions of lifting and B-spline circuits, are plotted. 

These results illustrate that lifting is increasingly preferable 

over B-spline as the number of channels and levels 

increase. 

 

D. Multiplication-Free Lifting 

The CC unit proposed in this paper uses one multiplier so 

that the calculations required per sample are 8 

multiplications and 8 additions that can be completed in 5 

cycles as listed in Table III. It is noteworthy that a general 

purpose lifting approach based on only shifts and additions 

was proposed in [3]. For the sake of completeness, we 

compared the demands of a CC unit with a multiplier 

(proposed in this paper) to a CC unit without a mul- tiplier, 

i.e., composed of only a shifter and an adder. The later 

approach resulted in 12 shift operations and 21 add 

operations, and required 21 cycles per sample. This is 

because the equa- tions required to compute 

multiplication-free lifting DWT did not show any 

regular structure such as the ones in (7). There- fore, 

substituting another adder and shifter in the data path did 

not help in reducing the number of cycles required to 

complete the computation. With respect to area demands, 

we found that for one sample pair, a CC unit without a 

multiplier requires 52% less area compared to a CC with 

multiplier. This obvi- ously translates into large savings 

in chip area. However, these savings were not substantial 

when the system is scaled up. For example, a 32-

channel/4-level DWT system using a CC with multiplier 

would occupy 6.5% of the total chip area as opposed to 

3.3% using a CC without multiplier. So the overall 

savings in chip area are only 3.2%. In contrast, the CC 

without multiplier requires 13.3% more power than a CC 

with multiplier for this specification. We therefore 

concluded that the reduction in area using a shift and add 

strategy in the lifting approach is overshad- owed by the 

increase in power dissipation when multichannel/ 

multilevel decomposition is sought. 

CONCLUSION 

 

VLSI architectures to compute a 1-D DWT for real-

time multichannel streaming data under stringent area 

and power constraints have been developed. The 

implementations are based on the lifting-scheme for 

wavelet computation and integer fixed-point precision 

arithmetic, which minimize com- putational load and 

memory requirements. A computational node has been 

custom designed for the quantized integer lifting DWT 

and characterized to estimate the maximum achievable 

computation frequency. Negligible degradation in the 

signal fidelity as a result of these approximations has 

been demon- strated. 

Detailed comparison between the lifting and the B-

spline schemes was presented. It was shown that the 

lifting approach is more suited when floating point 

operations are eliminated, thereby superseding the gain 

achieved by the B-spline ap- proach where adders 

replace multipliers. Two power and size efficient 

hardware alternatives for computing the single-level, 

single-channel wavelet transform have been described 

and analyzed. The memory management efficiency of the 

pipeline design results in slightly less power dissipation, 

while the se- quential execution design requires 

significantly less chip area. Design considerations for 

scaling these architectures to multi- channel and 

multilevel processing have been discussed. Area and 

power consumption models with detailed transistor 

count and switching frequency parameters have been 

described and used to compare the performance of the 



 

two design alternatives in multichannel and multilevel 

implementations. The results show many interesting 

characteristics of each design when it scales to an 

arbitrary number of levels and channels. When the 

number of channels is two or more, the sequential 

execution architecture was shown to be more efficient 

than the pipeline approach in terms of both power and 

chip area. Furthermore, results indicate that, using this 

architecture, multilevel pro- cessing of many channels 

simultaneously is 

 
 

 

Fig. 12. Total number of gates as a function of the number of channels and 
the number of levels for the lifting and B-spline implementation. 

 

 

feasible within the constraints of a high-density intracortical 

im- plant. This work demonstrates that on-chip real-time 

wavelet computation is feasible prior to data transmission, 

permitting large savings in bandwidth requirements and 

communication costs. This can substantially improve the 

overall performance of next generation implantable 

neuroprosthetic devices and brain- machine interfaces. 
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